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We investigate the sample-to-sample fluctuations in the conductivity of a ran- 
dom resistor network--equivalently, in the diffusivity of a disordered medium 
with symmetric hopping rates. We argue that whenever the effective conduc- 
tivity ~* is strictly positive, then the fluctuations are normal, i.e., proportional 
to (volume) -1/2. If the local conductivities are allowed to be zero, then a* 
vanishes when approaching the percolation threshold Pc. Close to Pc the fluctua- 
tions are anomalous. From the renormalization group on hierarchical lattices 
we find that at Pc fluctuations and mean scale in the same fashion, i.e., there is 
no independent scaling exponent for the fluctuations. 

KEY WORDS: Random resistor network; percolation threshold; scaling 
exponents. 

1. INTRODUCTION 

It  has been recognized for some t ime tha t  s ample - to - sample  f luctuat ions 
are an i m p o r t a n t  issue for d i so rdered  systems. If the quan t i ty  of physical  
interest  is not  self-averaging as the size of the system becomes large, then 
a mere  d i sorder  average m a y  be meaningless  and  the full d i s t r ibu t ion  mus t  

be elucidated.  But even for quant i t ies  which are self-averaging the f luctua- 
t ions (with respect  to d i so rde r )  car ry  in fo rmat ion  on qual i ta t ive  changes in 
the behav io r  of the 'system. F o r  example ,  the free energy of the 
S h e r r i n g t o n - K i r k p a t r i c k  mode l  of a spin glass is self-averaging, but  
f luctuat ions  change  when pass ing th rough  T,.. (1) 

In  this pape r  we invest igate  the sample - to - sample  f luctuat ions  in the 
conduc t iv i ty  of a r a n d o m  res is tor  ne twork  (equivalent ly  in the diffusivity 
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for a random walk in a symmetric random medium). The model is 
standard: To each bond b of a regular lattice we assign a random conduc- 
tance 6 b. The conductances are assumed to be statistically independent. 
A sample with volume A has then the conductivity 6 A. The precise defini- 
tion will be explained in Section 2. It  is known that 6A ~ 6" as [A[ ~ oe for 
almost every realization of the resistor network. (2) 6* is the macroscopic 
(effective) conductivity of the medium. 6"  does not fluctuate. Hence 6A is 
self-averaging. The problem under consideration is to determine the 
fluctuations of 6A around 6". 

The one-dimensional case is worked out easily, since the total 
resistance is the sum of single-bond resistors. Therefore one just has to add 
independent random variables. 6 A has Gaussian fluctuations of the order 
[At-1/2 around 6" provided small values of 6 b are sufficiently unlikely. In 
higher dimensions the current has more possibilities to cross the sample 
and the conductivity is no longer a sum of independent random variables. 
Still, as will be supported by a perturbational calculation in Section 2, 6A 
has normal fluctuations provided o-*>0. Thus, interesting fluctuation 
behavior can occur only close to critical points where 6" vanishes. Random 
resistor networks with such a transition have been studied in great detail; 
see refs. 3 and 4 for recent reviews. One assumes that 6b = 0 with proba- 
bility 1 - p and 6 b > 0 with probability p. In the case of a random mixture 
of conducting and insulating material one would choose 6b=  1 with 
probability p. If p is close to one, then the conducting bonds percolate 
throughout the sample and 6 " > 0 .  As p is decreased to the percolation 
threshold Pc, the effective conductivity vanishes continuously. To under- 
stand the fluctuation behavior for p > Pc but close to Pc it is convenient to 
introduce the percolation correlation length 3. For  length scales larger than 

the network looks like a regular lattice with small fluctuations in the 
conductivity, whereas for distances less than ~ there are strong fluctuations 
combined with an irregular local connectivity. Thus, for a sample of linear 
size L, L ~ 3, we expect to have fluctuations in the conductivity of the form 

( 6  2 ) - ( e r a ) 2  ~ ( i / L ) - a / 2  (1.1) 

Of course, the whole problem is to understand how the prefactor on the 
right side of (1.1) scales as Pc is approached. This will be the main focus 
of our investigation. 

2. Conduct iv i ty  and W e a k - D i s o r d e r  Expansion 

In the usual experimental setup one measures the current across the 
sample with a unit voltage drop maintained externally. We consider then 
a slab A of the d-dimensional lattice Z d and write x = (Xl, xa )  E Z J. Inde- 
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pendently, to each bond b = (x, y), px-  y[ = 1, we attach the conductance 
~r(x,y ) = a(y,~)~> 0. At the right and left boundaries of A, {x~ = 0}, {x~ = L}, 
the voltage ~b is prescribed. A has periodic boundary conditions along x• 
Let us define the linear operator 

Af(x)  = ~, a ( ~ , y ) [ f ( y ) - f ( x ) ]  (2.1) 
y ,  l x -  yl  = l 

The steady-state voltage then satisfies 

AO(x) = 0  (2.2) 

with q~(0, x •  ~b(L,x• The current through the bond (x, y) is 
given by 

j~,.~> = - ~ , , > ( ~ ( y )  - ~ (x) )  (2.3) 

We set q~ (x )=L-x1  +,5~(x). Inserting in (2.2) and solving for 6~b, one 
obtains the steady-state current and thereby the conductivity along the 
one-axis as 

aa=lAl-1 ~, {~(x,x+e~+u~(x) A )ul(x)} (2.4) 
x ~ A [  

Here 

u,(x)= Y. ~x,~+~e~ (2.5) 
e ,  lel  = 1 

with e~ the c~ th unit vector. A is to be understood with zero boundary con- 
ditions at {xl = 0}, {Xl = L} and periodic boundary conditions otherwise. 

Since for a given realization of bond conductances the resistor network 
is inhomogeneous, the effective conductivity is really a dx  d tensor. In (2.4) 
we computed only its (11) component. The tensorial character is more 
easily displayed for a (slightly unphysical) sample with periodic boundary 
conditions. We define the conductivity through the response in the current 
to a weak electric driving field. Then 

x e A  e ,  le l  = ~ 

Here A is understood with periodic boundary conditions. 
For the weak-disorder expansion we use (2.6) as starting point. (For 

the average conductivity a weak-disorder expansion has been carried out 
in ref. 5 and an expansion in the impurity concentration in ref. 6.) We 
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expand around the uniform medium with conductivity 60 = (6b ) .  Then 
6c~,y ) = 60 + 66r where (r = 0, 

(a6c~,x,)a6~,~,) > = (~y~>,  + ~y,a~>)( (6b-  ( 6b ) ) : )  

It is assumed here that ( (6  e - (6  e))2 ) 1/a = g ~ ao. Correspondingly, d and 
u split into a constant and a fluctuating part, A = Ao + aA and u = u o + 6u, 
where Uo=0 by (2.5). Using the Dyson series for A 1 we obtain 

IAh-~ Y', Ia=e6o+ Z a6(x,x+~)+Y',,Su~(x) G(x, y) (~)~e = 6u~(y) 
x ~ A  I e, le] = 1 y 

- - 2  E (~uc~(x) G(x,Y)a6(y,y+e) 
v z  e, le] = 1 

x (G(y + e, z) - G(y, z)) 6u~(z) + ...} 

Here G is the inverse of A o and is given by 

(2.7) 

d 

G(x,y)__IAL1 ~ ei,(x-y)g(k)1, e ( k ) = 6 o  ~ 2 ( 1 - c o s k ~ )  (2.8) 
k e B Z  ~ = 1 

where the sum is over the first Brillouin zone. 
We have to compute the variance ( ( 6 ~ ) ~ ) -  ( ( 6 A ) ~ )  2. TO order e 2 

only the first term in (2.7) contributes. The second term, c~uAol~u, gives a 
contribution of order e 4. Note that the cross terms between the first and 
second summands vanish. To order g 4 we have, then, in the case of three 
dimensions, 

2 ( ( 6 A ) a f l ) -  ( ( 6 A ) c ~ f l )  2 =  IAI-I { ~ f l g 2  --2 1 4 1 -4 1 4 +6 o (~6~t~e +~6~e +ise )} 
g4= ( 6 4 )  _ (6~)2  (2.9) 

To this order, the fluctuations in the conductivity are proportional to 
IA I 1/2. 

To be sure that the fluctuating part  of A does not produce anomalous 
behavior, we also computed the contribution of the last term in (2.7), 
which generates a term of order G6 for the variance. Again all Brillouin zone 
integrals converge and the variance is proportional  to the inverse of the 
volume. We expect this behavior to hold to all orders. 

3. R E A L - S P A C E  R E N O R M A L I Z A T I O N  H I E R A R C H I C A L  
LATT ICES 

To understand the fluctuations in the conductivity near the percolation 
threshold, one strategy would be to follow the change in the distribution of 
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0-A as the system size is doubled. Such an exact renormalization is difficult 
to handle, unfortunately, and one is forced to use approximations. In our 
context such an approximate renormalization group was first introduced 
by Stinchcombe and Watson, (8) who used it to determine the average con- 
ductivity near threshold. The Stinchcombe-Watson renormalization can be 
interpreted as an exact renormalization on some hierarchical lattice. (7) 
We will adopt this point of view. The critical behavior on a hierarchical 
lattice exhibits in general nonclassical critical exponents which depend on 
the connectivity of the lattice. However, one lacks a precise linkage 
between the dimension of the regular lattice and the connectivity of the 
approximating hierarchical lattices. Thus quantitative predictions should be 
taken with a grain of salt. 

In the following we examine two specific examples approximating 
two-dimensional regular lattices. (8'9/ The general case will be discussed in 
Section 6. 

The first model is the standard hierarchical lattice with branching ratio 
two (Fig. 1). To the bonds in the second graph one assigns the conduc- 
tivities al ,..., ~4. Clearly the conductance between A and B is then 

0-t = ( a l l  -[- a 2 1  ) 1 + ( 0 " 3 1 + 0 " 2 1 ) - - 1  (3.1) 

Now, if we assume that ~1,..., 0-4 are independent random variables with 
common distribution #(da), then " = "  in (3.1) should be read as an 
equality for distributions and the meaning of Eq. (3.1) is to give the 
distribution of the conductivity between A and B. More explicitly, if #n(d0-) 
is the distribution of the conductance at level n, then at level n + 1 

]~nl-1(dO') = f #n(d0-1) ~n(d0-2) ~n(do3) ~n(do4) 

xcS(~_[(0-~-1+a#,)-~+(a3~+~4 ,) i ]) (3.2) 

We want to avoid such cumbersome notation and will use = for equality 
between distributions. The large-size properties of the conductance are 
obtained by iterating the recursion (3.2) many times. 

A 

(Y2 V (Y4 
B 

A 

B 

Fig. 1. Construction of a hierarchical lattice with branching ratio two. 
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Another proposal (9) is the Wheatstone bridge (Fig. 2). Its recursion 
reads 

0-, _~ 0 - 3 1 - 0 - 1 ( 0 " 2 + 0 - 4 + 0 - 5 ) + 0 " 2 0 - 5 ]  +0-41-0-2(0" 1 -{- 0-3 -{- 0-5) "}- 0-10-5] (3.3) 
(0-1 + 0"3)(0-2 -4- 0"4) -I- 0-5(0"1 + 0-2 -~- 0"3 "1- 0"4) 

It is claimed that the recursion (3.3) is a better approximation to the 
two-dimensional lattice than (3.1). 

In the following section we will investigate the flow on the space of 
measures defined by (3.2). The discussion of (3.3) is completely analogous. 
We studied both (3.2) and (3.3) by means of Monte Carlo renormalization. 
The outcome for (3.3) is discussed in Section 5. 

4. F L O W  

The iteration (3.2) remains meaningful if we allow 0-1,-.., 04 to  vanish. 
Therefore I~n(d0") is concentrated on the closed half-line [0, oe). We first 
note that any constant value a*, 0-* i> 0, is a fixed point for (3.2). Thus we 
expect that a given starting distribution #o(d0") will flow under (3.2) to 
8(0"-0-*) with some 0-*, which is then the effective conductivity of the 
hierarchical lattice with single-bond conductivity I~o(da). To understand the 
geometry of the flow and its critical behavior, it is useful to decompose/~n 
as  

#n(d0-) = (1 - Pn) b(a) + p,,#'(d0-), fo -~ = 1 (4.1) 

and/~' concentrated on the open half-line (0, oe). Substituting (4.1) in (3.2), 
we obtain the iteration 

2 2 4 P , , + , = f ( P n )  = p~- -p~  (4.2) 

B 

Fig. 2. 

A 

B 

Wheatstone hierarchical lattice. 
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which determines the weight at zero and 

o.(n + 1) ~ E (O..In)) --1 + (0.. (2n)) --1] --1 ..~ E (O..gn))--1 _1_ (O..(4n)) --11 --1 

with probability p f f ( 2 p , , - p , 4  2 4) (4.3) 

o.(n + I ) ~  [ ( o . ] n ) ) 1  ..~ (0. ( 2 n ) ) I ] - - I  

with probability 2p2(1 2 2 - p , ) / ( 2 p ,  - p4 )  (4.4) 

for the remainder of the distribution. Here al ~) > 0, i = 1 ..... 4. 
We observe that the one-dimensional map (4.2) has a single repulsive 

fixed point at p = p~ defined through f(p~) = p~., p~ ~- 0.62, and two attrac- 
tive fixed points at p = 0, 1. If for the starting distribution p > p~, then p 
flows to 1 under (4.2) and the remainder of the distribution follows (4.3). 
Since there e ( ' ) >  0, we expect a limit distribution, concentrated at some 
a * > 0 .  To see how #'~(da) approximates its limit, we linearize (4.3) as 
~* + &rl ~. This yields 

6a(~+1)=1 L 6al ") (4.5) 
- 4  i=x 

Therefore 

< (&r(,))2) 1/= ~ 2 -"  (4.6) 

and 6~ (n) has a Gaussian distribution on that scale, provided the second 
moment of 6a (n) is finite. The number of bonds increases as 4 ". The effective 
conductivity is of the order of 1. Thus (4.6) means that the fluctuations of 
the conductance are normal and have a size of the order (volume) -1/2. 
(For a particular hierarchical lattice Gaussian fluctuations are proved in 
ref. 10.) We emphasize that the expansion (4.5) makes sense only if a * >  0. 

On the other hand, if for the initial distribution p < Pc, then p flows 
to zero under (4.2). The effective conductivity vanishes. The rest of the 
distribution is governed by (4.4), which corresponds to resistors in 
sequence. If < ( a ( ~  then according to (4.4), < a ( " ) ) ~ 2  n and 
< (a (n~ - < a ("~))2) x/2 ~ (2 xf2) n with Gaussian fluctuations on that scale. 

The only case left is a starting distribution with a weight at zero 
given exactly by 1 -  Pc. The weight at zero does not change then and the 
remainder flows under a nondegenerate combination of the two iterations 
(4.3) and (4.4). We could clarify this scaling only through Monte Carlo 
renormalization. In comparison to other RG flows, the simplifying feature 
of random conductivities on a hierarchical lattice is that the critical 
manifold is determined already by the one-dimensional map (4.2). 
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5. M O N T E  CARLO R E N O R M A L I Z A T I O N  

The only feasible method for a numerical investigation of the iteration 
(3.3) seems to be a Monte Carlo procedure. The basic algorithm is simple. 
If the starting distribution is binary, #(~ (1 - p )  6(a)+ p6(a-  1), 
then one generates a large array of independent random numbers with that 
distribution. An iterated array is generated by calculating out of five ran- 
dom numbers a new one according the rule (3.3). Since in each step the size 
of the array decreases by a factor of five, after a few iterations a rather 
small array is left with inherently large statistical errors. To avoid this dif- 
ficulty, we give up strict independence and reduce in each iteration the size 
of the array only by a factor of 1.3 according to some random algorithm. 
In this fashion we can iterate up to 30 times, keeping statistical errors on 
a reasonable level. For  particular cases we checked the stability of this 
procedure against runs with strict independence. 

Figure 3a shows the effective conductivity a* versus p for a binary dis- 
tribution on a Wheatstone hierarchical lattice. The percolation threshold is 
at pc=0.5.  As expected, the average conductivity is almost linear and 
vanishes as ( p -  Pc)' at Pc- The critical region is too small for a reliable 
determination of the exponent t. From the scaling relation (7.5) one infers 
that t ~  1.3. In Fig. 3b we show the width of the distribution for a after 18 
renormalization steps. If p is not too close to Pc, then the width scales as 
2 -n, in agreement with the linearization (4.5). Close to Pc it takes more 
steps to reach the scaling regime, a behavior to be discussed in more detail 
in Section 7. 

This leaves us with the critical cases. Fortunately the iteration for p 
alone determines already the unstable manifold of Eq. (4.2), which implies 
that for any choice of p, p # 0, 1, in (4.3) and (4.4) the flow should be criti- 
cal. This extra parameter in (4.3) and (4.4) is most welcome as a check on 
numerical stability. Of course, the scaling exponents of interest have to be 
computed with p =Pc .  We iterated according to (4.3) with probability w 
and according to (4.4) with probability 1 -  w, 0 < w <  1. The invariant 
distribution was reached already after 3 4  steps. It then scaled self-similarly 
a s  

#(n+ '~(da) = F(n)()~ da) (5.1) 

To a good approximation the scale factor 2 follows the linear dependence 
2(w)=-w+2(1-w). We recall that for the iteration (4.3), i.e., w = l ,  
( a ( n ) ) = O ( 1 ) ,  whereas for the iteration (4.4), i.e., w = 0 ,  (a(n))=2 -n. 
Thus, both limiting behaviors are reproduced and the interpolation is as 
simple as possible. The fixed point distribution seems to be very robust 
against small numerical errors. In Fig. 4 we show the invariant distribution 
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Fig. 3. (a) Average conductivity for a binary distribution on a Wheatstone hierarchical 
lattice. (b) Standard deviation in the conductivity for a binary distribution on a Wheatstone 
hierarchical lattice. 

for the Wheatstone iteration at p = Pc = 0.5. The scale factor is 2 -~ 1.9. For 
the iteration (3.2) at Pc the scale factor is 2 ~ 1.76. 

The Monte Carlo renormalization reveals a rather unexpected feature. 
At Pc there is only a single length scale in the sense that the mean and 
width of the distribution for the conductivity scale in precisely the same 
fashion. Since this property holds for various hierarchical lattices, we 
believe it not to be accidental and conjecture the same property for regular 
lattices. If so, then at p= Pc, (aA)  and ( ( a A -  (aA))2)  1/2 have to vanish 
at the same rate as IAI --+ oo. 
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Fig. 4. Invariant  distribution for the Wheatstone hierarchical lattice at P c - 0 . 5  (arbitrary 
scale). 

6. GENERAL H I E R A R C H I C A L  LATTICES 

In general, the substitution at a single bond could have an arbitrary 
geometric form. As an analogue of spatial dimension one commonly intro- 
duces a hierarchical lattice with z branches instead of two as in Fig. 1. But 
other substitutions have also been proposed in order to have an improved 
approximation to regular lattices. 

Given the substitution rule, we have a recursion of the form (3.1), 
(3.3). For  these two models o (n) is of the order 1. In general, this is not the 
case and we have to rescale the conductivity as o -'(~) = ano ~"). The rescaling 
factor a is determined through the ordered lattice, i.e., with all bond 
conductivities equal to 1. In terms of o '(n) the previously developed picture 
of the renormalization group flow is not altered. 

The recursion for o '~n) has as fixed points the constants o*, o*>/0.  
If p > P c ,  then 0 * >  0 and we are allowed to linearize around 0". This 
determines the fluctuations as 

((bo(n))2) t/2 ~ b - "  (6.1) 

for large n with b computed from the linearization. For  a regular lattice the 
fluctuations in the conductivity are of the order L-a/2 with L the linear 
dimension of the box. We identify L with the shortest path in the hierar- 
chical lattice. If for the basic cell the shortest path has q bonds, then L = q". 
Thus, it is natural to define the dimension of the hierarchical lattice as 

log(b) 
d =  2 - -  (6.2) 

log(q) 
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In the cases (3.1), (3.3) we have d = 2 ,  and for a branching ratio z 
hierarchical lattice 

d -  log(2z) (6.3) 
log(2) 

At Pc we obtain, as before, a mixture of recursions which determines 
the fixed point distribution on a single length scale. There is one additional 
simplifying feature. For  high dimensions, Pc is very close to zero. Therefore 
the recursions have vastly different weights. For example, for the branching 
ratio z = 3 (4) hierarchical lattice, Pc = 0.389 (0.282). The two-bond recur- 
sion has the largest probability of 0.327 (0.243) followed by the four-bond 
recursion with probability 0.059 (0.029). Since the scaling exponent seems 
to depend rather smoothly on the parameters of the mixture, a natural 
approximation is to keep only the highest-weight recursion. Of course, the 
mixture is needed in order to have a single length scale. Applying this 
approximation to the branching ratio z hierarchical lattice, we obtain 2 = 3, 
compared to the numerical value of 2 = 2.72 for z = 3 and 2 = 4 compared 
to 2 = 3.75 for z = 4. 

7. SCALING BEHAVIOR 

We return now to regular d-dimensional lattices and develop a scaling 
theory for the fluctuations near Pc on the basis of our results from the 
hierarchical lattices. Let us first recall the behavior of the average conduc- 
tivity. The sample is a box A with linear dimension L and volume L d. Close 
to Pc the effective conductivity a* scales as 

a * =  lim (aA)~(p--pc)',p>pc (7.1) 
IA[ ~ ce 

Exactly at p ,  the average conductivity vanishes with the linear size of the 
system as 

(aA)Ip~L-" (7.2) 

To relate t and/~, we argue that for p close to Pc one sees a behavior like 
(7.2) up to a length of the order 4, with ~ the correlation length of the 
percolation. Now 

~ (p - p~.)-~ (7.3) 

and therefore 

(aA(P))~-"~[(P-Pc) -~]  ~ = ( P - P c ) '  (7.4) 

822/69/5-6-4 
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which implies 

t =  vl~ (7,5) 

For  the sample-to-sample fluctuations it is natural to introduce in the 
same spirit also two scaling exponents. For  p close to Pc we have 

( ( 6  2 )  -- (Cr m ) Z ) l / Z ~ ( p - -  p,.) ~' L -d/2 (7 .6)  

where we anticipate the anomalous behavior of the amplitude. Exactly at 
Pc the fluctuations vanish as 

( ( a  2 ) - Qr A)2 ) ' / 2 lp  ' ~ L - ~  (7.7) 

Now for the hierarchical lattice we observed that at Pc the mean and width 
scale in the same fashion. If this remains to be so for regular lattices, then 

f i=U (7.8) 

As before we argue that the behavior (7.7) is seen in (7.6) up to a length 
4. Equating coefficients yields 

- 2 ~ = ( p _ p c )  2 ~  a (7.9) 

and therefore 

7 = i v (  d -  2fl) (7.10) 

Table  I 

v t # 7 

Hierarchical lattice a 
Branching ratio 2 1.62 1.30 0.84 
Wheatstone 1.43 1.32 0.93 

0.52 
0.2 
0.27 _+ 0.07 

Regular lattice b 
d = 2 4/3 1.3 0.97 0.08 
d = 3 0.88 2.02 2.30 - 1.4 
d =  6 1/2 3 6 - 3  

a v is computed from the linearization of (4.2). t~ is determined from the MC renormalization. 
t and ,? are obtained from the scaling relations (7.5) and (7.10). For the Wheatstone lattice 
7 is compared with the numerical value obtained from Fig. 4. 

b The values for v and t are taken from ref. 3. /~ and y are obtained through the scaling 
relations (7.5) and (7.10). 
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Thus the scaling behavior  of the fluctuations can be summarized as 

( ( G } -  (oA }2) ' /2- (~A }(~/L) -~/2 (7.11) 

for L>>r The relation (7.11) identifies the missing prefactor in (1.1) and 
exploits the fact that  close to Pc the conductivi ty is governed by a single 

independent  scaling exponent.  
For  the convenience o f  the reader we list in Table I the numerical 

values for the various exponents and indicate how they have been obtained. 
d =  6 is the upper  critical dimension. (3) Note  that by (7.6) and (7.11) the 
numerical  value of y results in a compet i t ion between the vanishing of 
( a A )  and the increase of the correlat ion length 4. For  d =  2 the second 
term barely wins and ? > 0, whereas for d ~> 2 negative, tending to the mean  
field value 7 = - 3 .  
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